Reconstruction of rat calvarial defects with human mesenchymal stem cells and osteoblast-like cells in poly-lactic-co-glycolic acid scaffolds.
نویسندگان
چکیده
Human mesenchymal stem cells (hMSCs) can be used for xenogenic transplantation due to their low immunogenicity, high proliferation rate, and multi-differentiation potentials. Therefore, hMSCs are an ideal seeding source for tissue engineering. The present study evaluates the reconstruction effects of hMSCs and osteoblast-like cells differentiated from hMSCs in poly-lactic-co-glycolic acid (PLGA) scaffolds on the calvarial defect of rats. Two bilateral full-thickness defects (5mm in diameter) were created in the calvarium of nonimmunosuppressed Sprague-Dawley rats. The defects were filled by PLGA scaffolds with hMSCs (hMSC Construct) or with osteoblast-like cells differentiated from hMSCs (Osteoblast Construct). The defects without any graft (Blank Defect) or filled with PLGA scaffold without any cells (Blank Scaffold) were used as controls. Evaluation was performed using macroscopic view, histology and immunohistochemical analysis respectively at 10 and 20 weeks after transplantation. In addition, fluorescent carbocyanine CM-Dil was used to track the implanted cells in vivo during transplantation. The results showed that while both hMSC Construct and Osteoblast Construct led to an effective reconstruction of critical-size calvarial defects, the bone reconstruction potential of hMSC Construct was superior to that of Osteoblast Construct in non-autogenous applications. Our findings verify the feasibility of the use of xenogenic MSCs for tissue engineering and demonstrate that undifferentiated hMSCs are more suitable for bone reconstruction in xenotransplantation models.
منابع مشابه
Comparison of Proliferation and Osteoblast Differentiation of Marrow-Derived Mesenchymal Stem Cells on Nano- and Micro-Hydroxyapatite Contained Composite Scaffolds
Bones constructed by tissue engineering are being considered as valuable materials to be used for regeneration of large defects in natural bone. In an attempt to prepare a new bone construct, in this study, proliferation and bone differentiation of marrow-derived mesenchymal stem cells (MSCs) on our recently developed composite scaffolds of nano-, micro-hydroxyapatite/ poly(l-lactic acid) were ...
متن کاملDifferentiation of Human Mesenchymal Stem Cell into Chonderocyte Like Cells 3D Poly Lactic Acid Glycosaminoglycan (PCL-GAG) Nano Fibre Scaffold
Introduction: Failure of human body tissue and organs is believed to be one of the most important health problems all over the world. The great challenge for tissue engineers is to optimize suitable systems to separate, proliferate and differentiate the cells so that they can set out to create tissue by a harmonic 3-D growth. Therefore, the tissue engineers must provide an environment like the ...
متن کاملOsteogenic Differentiation of Mesenchymal Stem Cells Via Osteoblast- Imprinted Substrate: In Vitro and In Vivo Evaluation in Rat Model
BACKGROUND: Stem cells have great effects in clinical cell-based therapy. Accordingly, controlling the behavior and directing the fate of stem cells cultured in the laboratory is an important issue. OBJECTIVES: The aim of this study was to evaluate osteogenic properties of adipose derived mesenchymal stem cells (ADSCs) which differentiated toward osteogenic linage by osteoblast-imprinted substr...
متن کاملBone Marrow Stromal Cells Associated with Poly L-Lactic-Co-Glycolic Acid (PLGA) Nanofi ber Scaff old Improve Transected Sciatic Nerve Regeneration
Background: Although peripheral nerves show capacity for regeneration after injury to a certain extent, the extent of regeneration is not remarkable. Previous studies have suggested that through the production of growth factors or extracellular matrix components, mesenchymal stem cells may enhance nerve regeneration.Objectives: In the present study, the therapeutic potenc...
متن کاملمقایسه توانایی ایجاد محیط رشد و تمایز مناسب سلولهای بنیادی مزانشیمی مشتق از بافت چربی انسانی بین داربستهای زیستی مختلف
Background: Although the presence of articular cartilage progenitor cells is already known, but due to lack of blood supply, its ability to heal is poor. In past, tissue engineering approaches has been mainly focused on the collection and culture of chondrocyte cells on biodegradable scaffolds such as polyglycolic acid in vitro and their autologous transplantation. Recently, due to the difficul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European cells & materials
دوره 20 شماره
صفحات -
تاریخ انتشار 2010